If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+160t+11=0
a = -16; b = 160; c = +11;
Δ = b2-4ac
Δ = 1602-4·(-16)·11
Δ = 26304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{26304}=\sqrt{64*411}=\sqrt{64}*\sqrt{411}=8\sqrt{411}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-8\sqrt{411}}{2*-16}=\frac{-160-8\sqrt{411}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+8\sqrt{411}}{2*-16}=\frac{-160+8\sqrt{411}}{-32} $
| Y=7x^2-14x-56 | | -3=3/5x-2 | | 15=9.5+0.0004x | | 6•3^x-1=18 | | 15=9.5+0.4x | | x2-589x=98.5 | | 7*8-6=k | | 32b+5=20− | | 15=9.5+(0.4x) | | 8x+7-x=21 | | 40-3x=27 | | 15=9.5*0.4x | | 169=273-u | | 2/3w+4=1/3 | | 6(y+7)=2(Y-3 | | 18^x-1=18 | | 142-y=192 | | 6x3^x-1=18 | | 3(j-90)=15 | | 277=-w+64 | | 21y4=(B)(7y3) | | 64-49v^2=0 | | 6(c-83)=84 | | 12-2*5=k | | 60=-v+197 | | x^2=16/64 | | 7+3m=4 | | 24/3+5=k | | −5(−2x−4)+5x-4=-29 | | v+5+-8=-4 | | 3.8x+5.4x-6.7=11.3 | | v+5+-8=8 |